Research Article

Directable Fuzzy Automata

by  V. Karthikeyan, M. Rajasekar
journal cover
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 125 - Issue 8
Published: September 2015
Authors: V. Karthikeyan, M. Rajasekar
10.5120/ijca2015906119
PDF

V. Karthikeyan, M. Rajasekar . Directable Fuzzy Automata. International Journal of Computer Applications. 125, 8 (September 2015), 1-4. DOI=10.5120/ijca2015906119

                        @article{ 10.5120/ijca2015906119,
                        author  = { V. Karthikeyan,M. Rajasekar },
                        title   = { Directable Fuzzy Automata },
                        journal = { International Journal of Computer Applications },
                        year    = { 2015 },
                        volume  = { 125 },
                        number  = { 8 },
                        pages   = { 1-4 },
                        doi     = { 10.5120/ijca2015906119 },
                        publisher = { Foundation of Computer Science (FCS), NY, USA }
                        }
                        %0 Journal Article
                        %D 2015
                        %A V. Karthikeyan
                        %A M. Rajasekar
                        %T Directable Fuzzy Automata%T 
                        %J International Journal of Computer Applications
                        %V 125
                        %N 8
                        %P 1-4
                        %R 10.5120/ijca2015906119
                        %I Foundation of Computer Science (FCS), NY, USA
Abstract

The aim of this paper is testing the directability of a given fuzzy automaton. A fuzzy automaton is directable if there exists a word, a directing word, which takes each state of a fuzzy automaton to a single state with some membership value. In this paper, we proposed a method for testing the directability of a fuzzy automaton using the mergeability relation.

References
  • Cao. Y., Chen. G., Kerre. E. 2011. Bisimulations for fuzzytransition systems, IEEE Transactions on Fuzzy Systems, no. 19: 540-552.
  • Cao. Y., Ezawa. Y. 2012. Nondeterministic fuzzy automata, Information Sciences, no. 191: 86-97.
  • Doostfatemeh. M., Kremer. S. C. 2005. New directions in fuzzy automata, International Journal of Approximate Reasoning, no. 38: 175-214.
  • Kandel. A., Lee. S. C. 1979. Fuzzy switching and automata theory applications, Edward Arnold Publishers Ltd. London.
  • Karthikeyan. V., Rajasekar. M. 2011. Relation in fuzzy automata, Advances in Fuzzy Mathematics, 6 no. 1: 121-126.
  • Karthikeyan. V., Rajasekar. M. 2012. Local necks of fuzzy automata, Advances in Theoretical and Applied Mathematics, 7 no. 2: 393-402.
  • Karthikeyan. V., Rajasekar. M. 2015. - Synchronized fuzzy automata and their applications, Annals of Fuzzy Mathematics and Informatics, 10 no. 2: 331-342.
  • Mordeson. J. N., Malik. D. S. 2002. Fuzzy automata and languages-theory and applications, Chapman & Hall/ CRC Press.
  • Santos. E. S. 1968. General formulation of sequential machines, Information and Control no. 12: 5-10.
  • Wee. W. G. 1967. On generalizations of adaptive algorithm and application Of the fuzzy sets concept to pattern classification, Ph.D Thesis Purude University.
  • Zadeh. L. A. 1965. Fuzzy sets, Information and Control, no. 8: 338-353.
  • Zimmermann. H. J. 1985. Fuzzy set theory and its applications, International Series in Management Science/ Operation Research, Kluwer- Nijhoff, Boston, MA.
Index Terms
Computer Science
Information Sciences
No index terms available.
Keywords

Directable Mergeable Congruence and Directing Congruence

Powered by PhDFocusTM