Research Article

The Minimum Hub Distance Energy of a Graph

by  Veena Mathad, Sultan Senan Mahde
journal cover
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 125 - Issue 13
Published: September 2015
Authors: Veena Mathad, Sultan Senan Mahde
10.5120/ijca2015906179
PDF

Veena Mathad, Sultan Senan Mahde . The Minimum Hub Distance Energy of a Graph. International Journal of Computer Applications. 125, 13 (September 2015), 1-6. DOI=10.5120/ijca2015906179

                        @article{ 10.5120/ijca2015906179,
                        author  = { Veena Mathad,Sultan Senan Mahde },
                        title   = { The Minimum Hub Distance Energy of a Graph },
                        journal = { International Journal of Computer Applications },
                        year    = { 2015 },
                        volume  = { 125 },
                        number  = { 13 },
                        pages   = { 1-6 },
                        doi     = { 10.5120/ijca2015906179 },
                        publisher = { Foundation of Computer Science (FCS), NY, USA }
                        }
                        %0 Journal Article
                        %D 2015
                        %A Veena Mathad
                        %A Sultan Senan Mahde
                        %T The Minimum Hub Distance Energy of a Graph%T 
                        %J International Journal of Computer Applications
                        %V 125
                        %N 13
                        %P 1-6
                        %R 10.5120/ijca2015906179
                        %I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper, the concept of minimum hub distance energy EHd(G) of a connected graph G is introduced and minimum hub distance energies of some standard graphs and a number of wellknown families of graphs are computed. Upper and lower bounds for EHd(G) are also established.

References
  • C. Adiga, A. Bayad, I. Gutman, S. A. Srinivas, The minimum covering energy of a graph, Kragujevac Journal of Science, 34(2012), 39-56.
  • R. B. Bapat, Graphs and Matrices, Hindustan Book Agency, 2011.
  • R. B. Bapat, S. Pati, Energy of a graph is never an odd integer, Bulletin of Kerala Mathematics Association, 1(2011), 129-132.
  • J. Bermond, J. Bond, D. Peleg and S. Perennes, The power of small coalitions in graphs, Discrete Applied Mathematics, 127(2003), 399 - 414.
  • S. B. Bozkurt, A. D. G¨ung¨or and B. Zhou, Note on the distance energy of graphs, MATCH Communication in Mathematical and in Computer Chemistry, 64 (2010), 129-134.
  • G. Caporossi, E. Chasset and B. Furtula, Some conjectures and properties on distance energy, Les Cahiers du GERAD, 64 (2009), 1-7.
  • T. Grauman, S. Hartke, A. Jobson, B. Kinnersley, D. west, L. wiglesworth, P. Worah and H. Wu, The hub number of a graph, Information processing letters , 108(2008), 226-228.
  • J. W. Grossman, F. Harary, M. Klawe, Generalized ramsey theorem for graphs, X: Double stars, Discrete Mathematics, 28(1979), 247-254.
  • I. Gutman, The energy of a graph, Ber. Math-Statist. Sekt. Forschungsz. Graz, 103(1978), 1-22.
  • I. Gutman, X. Li, J. Zhang, Graph Energy, (Ed-s: M. Dehmer, F. Em-mert) Streib., Analysis of Complex Networks, From Biology to Linguistics, Wiley-VCH, Weinheim, (2009), 145-174.
  • A. D. G¨ung¨or and S. B. Bozkurt, On the distance spectral radius and distance energy of graphs, Linear Multilinear Algebra, 59 (2011), 365-370.
  • F. Harary, Graph Theory, Addison Wesley, Massachusetts, 1969.
  • T.W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dckker, New York, 1998.
  • G. Indulal, I. Gutman and A. Vijayakumar, On distance energy of graphs, MATCH Communication in Mathematical and in Computer Chemistry, 60 (2008), 461-472.
  • V. R. Kulli, Theory of domination in graphs, Vishwa International Publications, Gulbarga, India, 2010.
  • X. Li, Y. Shi and Gutman, Graph Energy, Springer, New York Heidelberg Dordrecht, London, 2012.
  • H. S. Ramane, D. S. Revankar, I. Gutman, S. B. Rao, B. D. Acharya and H. B. Walikar, Bounds for the distance energy of a graph, Kragujevac Journal of Mathematics, 31 (2008), 59-68.
  • M. Walsh, The hub number of graphs, International Journal of Mathematics and Computer Science, 1 (2006), 117-124.
Index Terms
Computer Science
Information Sciences
No index terms available.
Keywords

Minimum hub set minimum hub distance matrix minimum hub distance eigenvalues minimum hub distance energy.

Powered by PhDFocusTM