Research Article

Weak Set-Labeling Number of Certain Integer Additive Set-Labeled Graphs

by  N. K. Sudev, K. A. Germina, K. P. Chithra
journal cover
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 114 - Issue 2
Published: March 2015
Authors: N. K. Sudev, K. A. Germina, K. P. Chithra
10.5120/19947-1772
PDF

N. K. Sudev, K. A. Germina, K. P. Chithra . Weak Set-Labeling Number of Certain Integer Additive Set-Labeled Graphs. International Journal of Computer Applications. 114, 2 (March 2015), 1-6. DOI=10.5120/19947-1772

                        @article{ 10.5120/19947-1772,
                        author  = { N. K. Sudev,K. A. Germina,K. P. Chithra },
                        title   = { Weak Set-Labeling Number of Certain Integer Additive Set-Labeled Graphs },
                        journal = { International Journal of Computer Applications },
                        year    = { 2015 },
                        volume  = { 114 },
                        number  = { 2 },
                        pages   = { 1-6 },
                        doi     = { 10.5120/19947-1772 },
                        publisher = { Foundation of Computer Science (FCS), NY, USA }
                        }
                        %0 Journal Article
                        %D 2015
                        %A N. K. Sudev
                        %A K. A. Germina
                        %A K. P. Chithra
                        %T Weak Set-Labeling Number of Certain Integer Additive Set-Labeled Graphs%T 
                        %J International Journal of Computer Applications
                        %V 114
                        %N 2
                        %P 1-6
                        %R 10.5120/19947-1772
                        %I Foundation of Computer Science (FCS), NY, USA
Abstract

Let N0 be the set of all non-negative integers, let X N0 and P(X) be the the power set of X. An integer additive set-labeling (IASL) of a graph G is an injective function f : V (G) ! P(N0) such that the induced function f+ : E(G) ! P(N0) is defined by f+(uv) = f(u) + f(v), where f(u) + f(v) is the sum set of f(u) and f(v). An IASL f is said to be an integer additive set-indexer (IASI) of a graph G if the induced edge function f+ is also injective. An integer additive set-labeling f is said to be a weak integer additive set-labeling (WIASL) if jf+(uv)j = max(jf(u)j; jf(v)j) 8 uv 2 E(G). The minimum cardinality of the ground setX required for a given graph G to admit an IASL is called the set-labeling number of the graph. In this paper, the notion of the weak set-labeling number of a graph G is introduced as the minimum cardinality of X so that G admits a WIASL with respect to the ground set X and the weak set-labeling numbers of certain graphs are discussed.

References
  • J. A. Bondy and U. S. R. Murty, Graph Theory, Springer, 2008.
  • A. Brandst¨adt, V. B. Le and J. P. Spinrad, Graph Classes: A Survey, SIAM, Philadelphia, 1999.
  • J. A. Gallian, A Dynamic Survey of Graph Labelling, The Electronic Journal of Combinatorics, DS #16, 2011.
  • K. A. Germina and T. M. K. Anandavally, Integer Additive Set-Indexers of a Graph: Sum Square Graphs, Journal of Combinatorics, Information and System Sciences, 37(2- 4)(2012), 345-358.
  • K. A. Germina and N. K. Sudev, On Weakly Uniform Integer Additive Set-Indexers of Graphs, International Mathematical Forum, 8(37)(2013), 1827-1834. DOI:10. 12988/imf. 2013. 310188
  • F. Harary, Graph Theory, Addison-Wesley Publishing Company Inc. , 1994.
  • N. K. Sudev and K. A. Germina, On Integer Additive Set- Indexers of Graphs, International Journal of Mathematical Sciences & Engineering Applications, 8(II)(2014), 11-22.
  • N. K. Sudev and K. A. Germina, A Characterisation of Weak Integer Additive Set-Indexers of Graphs, ISPACS Journal of Fuzzy Set Valued Analysis, 2014(2014), 7 pages, DOI: 10. 5899/2014/jfsva-00189.
  • N. K. Sudev and K. A. Germina, Weak Integer Additive Set- Indexers of Certain Graph Operations, Global Journal of Mathematical Sciences: Theory & Practical, 6(1)(2014), 25- 36.
  • N. K. Sudev and K. A. Germina, A Note on Sparing Number of Graphs, Advances and Applications in Discrete Mathematics, 14(1)(2014),50-65.
  • N. K. Sudev and K. A. Germina, Weak Integer Additive Set- Indexers of Certain Graph Classes, to appear in Journal of Discrete Mathematical Sciences & Cryptography.
  • N. K. Sudev, K. A. Germina and K. P. Chithra, Weak Integer Additive Set-Labeled Graphs: A Creative Review, to appear in Asian European Journal of Mathematics.
  • W. D. Wallis, Beginner's Guide to Graph Theory, Birkh¨auser, Boston, 2007.
  • D. B. West, Introduction to Graph Theory, Pearson Education Inc. , 2001.
  • Information System on Graph Classes and their Inclusions, http://www. graphclasses. org.
Index Terms
Computer Science
Information Sciences
No index terms available.
Keywords

Integer additive set-labeled graphs weak integer additive setlabeled graphs weak set-labeling number of a graph.

Powered by PhDFocusTM