Research Article

Generalized Wavelet Transform Associated with Legendre Polynomials

by  C.P.Pandey, M.M.Dixit, Rajesh Kumar
journal cover
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 108 - Issue 12
Published: December 2014
Authors: C.P.Pandey, M.M.Dixit, Rajesh Kumar
10.5120/18966-0308
PDF

C.P.Pandey, M.M.Dixit, Rajesh Kumar . Generalized Wavelet Transform Associated with Legendre Polynomials. International Journal of Computer Applications. 108, 12 (December 2014), 35-40. DOI=10.5120/18966-0308

                        @article{ 10.5120/18966-0308,
                        author  = { C.P.Pandey,M.M.Dixit,Rajesh Kumar },
                        title   = { Generalized Wavelet Transform Associated with Legendre Polynomials },
                        journal = { International Journal of Computer Applications },
                        year    = { 2014 },
                        volume  = { 108 },
                        number  = { 12 },
                        pages   = { 35-40 },
                        doi     = { 10.5120/18966-0308 },
                        publisher = { Foundation of Computer Science (FCS), NY, USA }
                        }
                        %0 Journal Article
                        %D 2014
                        %A C.P.Pandey
                        %A M.M.Dixit
                        %A Rajesh Kumar
                        %T Generalized Wavelet Transform Associated with Legendre Polynomials%T 
                        %J International Journal of Computer Applications
                        %V 108
                        %N 12
                        %P 35-40
                        %R 10.5120/18966-0308
                        %I Foundation of Computer Science (FCS), NY, USA
Abstract

The convolution structure for the Legendre transform developed by Gegenbauer is exploited to define Legendre translation by means of which a new wavelet and wavelet transform involving Legendre Polynomials is defined. A general reconstruction formula is derived.

References
  • C. K. Chui, An Introdcution to Wavelets, Acadmic Press, New York (1992).
  • U. Depczynski, Sturm-Liouville wavelets, Applied and Computational Harmonic Analysis, 5 (1998), 216-247.
  • G. Kaiser, A Friendly Guide to Wavelets, Birkhauser Verlag, Boston (1994).
  • R. S. Pathak, Fourier-Jacobi wavelet transform, Vijnana Parishad Anushandhan Patrika 47 (2004), 7-15.
  • R. S. Pathak and M. M. Dixit, Continuous and discrete Bessel Wavelet transforms, J. Computational and Applied Mathematics, 160 (2003) 241-250.
  • E. D. Rainville, Special Functions, Macmillan Co. , New York (1963).
  • R. L. Stens and M. Wehrens, Legendre Transform Methods and Best Algebraic Approximation, Comment. Math. Prace Mat 21(2) (1980), 351-380.
Index Terms
Computer Science
Information Sciences
No index terms available.
Keywords

Legendre function Legendre transforms Legendre convolution Wavelet transforms.

Powered by PhDFocusTM