Research Article

Quartic Spline Interpolation

by  Suyash Dubey, Y.P. Dubey
journal cover
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 105 - Issue 3
Published: November 2014
Authors: Suyash Dubey, Y.P. Dubey
10.5120/18358-9493
PDF

Suyash Dubey, Y.P. Dubey . Quartic Spline Interpolation. International Journal of Computer Applications. 105, 3 (November 2014), 20-23. DOI=10.5120/18358-9493

                        @article{ 10.5120/18358-9493,
                        author  = { Suyash Dubey,Y.P. Dubey },
                        title   = { Quartic Spline Interpolation },
                        journal = { International Journal of Computer Applications },
                        year    = { 2014 },
                        volume  = { 105 },
                        number  = { 3 },
                        pages   = { 20-23 },
                        doi     = { 10.5120/18358-9493 },
                        publisher = { Foundation of Computer Science (FCS), NY, USA }
                        }
                        %0 Journal Article
                        %D 2014
                        %A Suyash Dubey
                        %A Y.P. Dubey
                        %T Quartic Spline Interpolation%T 
                        %J International Journal of Computer Applications
                        %V 105
                        %N 3
                        %P 20-23
                        %R 10.5120/18358-9493
                        %I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper, we have obtained existence, uniqueness, and error bound of deficient quartic spline interpolation.

References
  • Davis, P. J. Interpolation and approximation, Blaisdell New York 1969
  • Dikshit,H. P. and Rana, S. S. Cubic Interpolatory splines with non uniform Meshes J. Approx. Theory Vol 45, no4(1985)
  • C. A. Hall and Meyer, W. W. ; Optimal error bounds for cubic spline Interpolation J. Approx. Theory, 58 (1989), 59-67.
  • Kopotun K. A. : Univariate spline equivalence of moduli of smoothness and application . Mathematics of computation 76 (2007), 930-946.
  • Marken, K. and Reimer's M. An unconditionally convergent Methods for computing Zero's of Splines and Polynomials. Mathematics of computation 76 (2007) 845-866.
  • Howell, G and Varma, A. K. Best error bound for quartic spline interpolation J. Approx. theory 58 (1989), 59-67.
  • Rana, S. S. Quartic spline interpolation, Jour. of approximation Theory 57 (1989), 300-305.
  • Rana, S. S. , Convergence of a class of deficient interpolatory splines, Rocky Mount. Journal of Math. 18 (1988) 825-831.
  • R. P. Agrawal and P. J. Y. Wang, Error Inequalaties of Polynomial Interpolation and their application. Kumar Academic Publisher, 1993.
  • R. H. J. G. Gmelig - Meyling. On Interpolation by Vibariate Quintic Spline of classd C2 (Constructive theory of function 87) (Eds. Sundov et. al. ) (1987) 153-61.
  • Deboor, C. A. Practical Guide to Splines, Applied Mathematical Science, Vol. 27 Spoinger, Varlag, New York 1979.
  • Hall, C. A. and Meyer, W. W. , J. Approximation Theory 16 (1976), pp 105-122.
  • Howell, G. and Verma, A. K. Best Error Bound of Quartic Spline Interpolation, J. Approx. Theory 58 (1989), 58-67.
  • Davis, P. J. Interpolation and approximation, New York, 1969.
  • Dubey, Y. P. Best Error Bounds of Spline of degree six. Int. Jour. of Mathematical Ana. Vol. 5 (2011), pp. 21-24.
  • Gemlling, R. H. J. and Meyling, G. in Interpolation by Bivartate Quintic Splines of Class Construction of Theory of function 87 (ed) Sendor et al (1987) 152-61.
  • Rana, S. S. and Dubey, Y. P. Best ERror Bounds of Quintic Spline Interpolation J. Pune and App. Math 28 (10) 1937-44 (1997).
  • Rana, S. S. and Dubey, Y. P. Best Error Bounds of deficient quartic spline interpolation, Indian Journal Pune and Appl. Math 30(4) (1999), 385-393.
  • Meir, A. and Sharma, A. Convergence of a class of interpolatory spline J. Approx. Theory (1968), pp. 243-250.
Index Terms
Computer Science
Information Sciences
No index terms available.
Keywords

Deficient Quartic Spline Interpolation Error Bounds

Powered by PhDFocusTM