Research Article

The Geodetic Parameters of Strong Product Graphs

by  Ashalatha K.S, Venkanagouda M Goudar, Venkatesha
journal cover
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 101 - Issue 12
Published: September 2014
Authors: Ashalatha K.S, Venkanagouda M Goudar, Venkatesha
10.5120/17736-8835
PDF

Ashalatha K.S, Venkanagouda M Goudar, Venkatesha . The Geodetic Parameters of Strong Product Graphs. International Journal of Computer Applications. 101, 12 (September 2014), 1-6. DOI=10.5120/17736-8835

                        @article{ 10.5120/17736-8835,
                        author  = { Ashalatha K.S,Venkanagouda M Goudar,Venkatesha },
                        title   = { The Geodetic Parameters of Strong Product Graphs },
                        journal = { International Journal of Computer Applications },
                        year    = { 2014 },
                        volume  = { 101 },
                        number  = { 12 },
                        pages   = { 1-6 },
                        doi     = { 10.5120/17736-8835 },
                        publisher = { Foundation of Computer Science (FCS), NY, USA }
                        }
                        %0 Journal Article
                        %D 2014
                        %A Ashalatha K.S
                        %A Venkanagouda M Goudar
                        %A Venkatesha
                        %T The Geodetic Parameters of Strong Product Graphs%T 
                        %J International Journal of Computer Applications
                        %V 101
                        %N 12
                        %P 1-6
                        %R 10.5120/17736-8835
                        %I Foundation of Computer Science (FCS), NY, USA
Abstract

A set S V (G) is a split geodetic set of G, if S is a geodetic set and hV . . Si is disconnected. The split geodetic number of a graph G, is denoted by gs(G), is the minimum cardinality of a split geodetic set of G. A set S V (G) is a strong split geodetic set of G, if S is a geodetic set and hV . . Si is totally disconnected. The strong split geodetic number of a graph G, is denoted by gss(G), is the minimum cardinality of a strong split geodetic set of G. In this paper we obtain the geodetic number, split geodetic number, strong split geodetic number and non split geodetic number of strong product graphs, composition of graphs and join of graphs.

References
  • Ashalatha K. S. ,Venkanagouda. M. Goudar, Venkatesha. , 2014. Strong split geodetic number of a graph, International Journal of Computer Applications. , 89(4) (2014), 1-4
  • G. Chartrand, F. Harary, and P. Zhang, 2002. On the geodetic number of a graph. Networks. 39,(2002),1-6.
  • G. Chartrand and P. Zhang, 2006. Introduction to Graph Theory, Tata McGraw Hill Pub. Co. Ltd.
  • F. Harary, 1969. Graph Theory,Addison-Wesely,Reading,MA.
  • Venkanagouda M. Goudar, K. S. Ashalatha, Venkatesha, 2014. Split Geodetic Number of a Graph, Advances and Applications in Discrete Mathematics. 13(1) (2014), 9-22.
  • Venkanagouda. M. Goudar, Tejaswini K. M, Venkatesha. , Non split geodetic number of a graph, Indian Journal of Pure and Applie Mathematics. (Communicated).
Index Terms
Computer Science
Information Sciences
No index terms available.
Keywords

Cartesian product Distance Edge covering number Split geodetic number Vertex covering number

Powered by PhDFocusTM